Solutions to Problem 1.

a.
$$\Pr\{Y_4 > 30 \mid Y_2 = 10\} = \Pr\{Y_4 - Y_2 > 20 \mid Y_2 = 10\}$$

 $= \Pr\{Y_4 - Y_2 > 20\}$
 $= \Pr\{Y_2 > 20\}$
 $= 1 - \Pr\{Y_2 \le 20\}$
 $= 1 - \sum_{j=0}^{20} \frac{e^{-8(2)}(8(2))^j}{j!} \approx 0.1318$

b.
$$\Pr\{T_{50} \le 6\} = F_{T_{50}}(6)$$
 (T_{50} is Erlang distributed with $n = 50$ phases and parameter $\lambda = 8$)
$$= 1 - \sum_{j=0}^{49} \frac{e^{-8(6)}(8(6))^j}{j!} \approx 0.405$$

Note. You should get the same answer if you computed $Pr\{Y_6 \ge 50\}$ instead.

c.
$$\Pr\{T_{100} \le 12 \mid Y_6 = 40\} = \Pr\{Y_{12} \ge 100 \mid Y_6 = 40\}$$

 $= \Pr\{Y_{12} - Y_6 \ge 60 \mid Y_6 = 40\}$
 $= \Pr\{Y_{12} - Y_6 \ge 60\}$
 $= \Pr\{Y_6 \ge 60\}$
 $= 1 - \sum_{j=0}^{59} \frac{e^{-8(6)}(8(6))^j}{j!} \approx 0.0523$

d.
$$E[T_4] = \frac{4}{8} = \frac{1}{2}$$